Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent
نویسندگان
چکیده
• Root carbon (C) partitioning in two host plant species colonized by one of three arbuscular mycorrhizal (AM) fungal species was investigated. • Split-root systems of barley ( Hordeum vulgare ) and sugar maple ( Acer saccharum ) were inoculated on one side with one of three AM fungi. Leaves were labelled with 14 CO 2 3 wk after inoculation. Plants were harvested 24 h later and the root systems from the mycorrhizal (M) and nonmycorrhizal (NM) sides were analysed separately for 14 C. • Partitioning of 14 C between M and NM sides varied depending on the fungal and host plant species used. Gigaspora rosea showed a strong C-sink capacity with both plant species, Glomus intraradices showed a strong C-sink capacity with barley, and Glomus mosseae did not affect 14 C partitioning. The C-sink strength of the M barley roots inoculated with G. rosea or G. intraradices was linearly correlated with the degree of colonization. • The use of three AM fungal and two plant species allowed us to conclude that C-sink strength of AM fungi depends on both partners involved in the symbiosis.
منابع مشابه
NOTE / NOTE Variable carbon-sink strength of different Glomus mosseae strains colonizing barley roots
Root carbon (C) partitioning was investigated in barley (Hordeum vulgare L.) colonized by one of three strains of the arbuscular mycorrhizal fungus (AMF) Glomus mosseae (Nicolson & Gerdemann) Gerd. & Trappe. The roots of each plant were evenly divided between two compartments of a split-root system and one side was inoculated with one of the three AMF strains. Twenty-three days after inoculatio...
متن کاملDiversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants
Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community stru...
متن کاملBioprotection against Gaeumannomyces graminis in barley – a comparison between arbuscular mycorrhizal fungi
Gaeumannomyces graminis var. tritici causes take-all disease, the most important root disease of cereal plants. Cereal plants are able to form a symbiotic association with soil-borne arbuscular mycorrhizal fungi which can provide bioprotection against soil-borne fungal pathogens. However, the bioprotective effect of arbuscular mycorrhizal fungi against soil-borne fungal pathogens might vary. In...
متن کاملInvestigation on Arbuscular Mycorrhizal Fungi (AMF) associated with Crocus sativus in Khorasan Razavi and Southern Khorasan provinces (north east of Iran)
Iran is the largest producer of saffron (Crocus sativus) in the world. More than 80% of higher plant species have a mutual relationship with mycorrhizal fungi, which enhances the plant growth and its productivity. With identification of native arbuscular mycorrhizal fungi and their application, it could be possible to expand saffron cultivated area and increase the performance of arable lands. ...
متن کاملFurther root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization.
An established arbuscular mycorrhizal symbiosis suppresses further mycorrhization. It is not clear whether the observed suppressional effect is linked with the level of root colonization or not. In the present work we studied the effect of the degree of root colonization by the arbuscular mycorrhizal fungus Glomus mosseae on further root colonization by G. mosseae. At different time points barl...
متن کامل